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SUMMARY
bt

A theoretical and experimental study was made of the méchanical behavior
of the cornea. The theoretical analysis included an analytical solution for the
symmetrical constraint of a thin, shallow, spherical shell by a rigid indenter.

The experimental study investigated the rheology of the cornea with particular
emphasis on its compliance with the requirements of the Boltzmann superposition
principle. Representative results of tests on twenty enucleated hog eyes and two
human eyes have been reported. |

The corneas of the human and hog eyes behaved as linear viscoelaﬁtic solids;
the human eyes differed from the hog eyes in having a long term creep component.
Several eyes were testea.at the site of procurement, six to seven minutes after
the animal's death, and it was established that creep is not an artifact due to
aging or enucleation.

The analytical and experimental results were combined to study some Instruments
used to detect the level of pressure in the eye. The theoretical analysis predicted
that a type of elastic instability occurs during the process of flattening a small
portion of the corneaj this is discussed with reference to the Goldmann and Mackay=
Marg tonometers. The role of corneal creep was considered with reference to the
response of the Schigtz Indentation tonometer during the time dependent process known

as tonography.’ | Cl& A



PREFACE

The nature of this study of the measurement of intraocular pressure leads
to a three-fold presentation. We first give an analytical solution for the
symmetrical constraint of a thin elastic shell by a rigid indenter. In the
next chapter we record our experimental investigation of the rheology of the
cornea. And then, in chapter three, the analytical and experimental results
are combined to study some problems of tonometry and tonography.

Consequently, chapter one begins with an introduction to the analytical
work, and the introduction to the second chapter addresses itself to the experi-
mental study. In the introduction to chapter three, we orient the previous
results toward the glaucoma problem; therein we discuss the limitations of
applying our results which are based on the linear theory of elasticity to the
analysis of various instruments employed to measure intraocular pressure.

Although the basic analytical formulation is contained in chapter one,
the'problem of tonography requires an extension of these results. And In order
to gain a slight insight into that problem, in Chapter 3 we extend the
previous results to Include the rising intraocular pressure (due to the applied
load), the fluid outflow and some heuristic remarks based on the linear theory

of visco~elasticity.
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CHAPTER ONE

“An Analytical Investigation of the Deformation of a Shallow
Spherical Shell by a Rigid Indenter"

1.1. Introduction

The contact problem in elasticity is a boundary value problem of mixed
type. Over a region, whose boundary is not a=-priori known, displacements
are specified; outside this region one specifies stresses, The solution must
determine the stresses and displacements throughout the body as well as the
boundary between the loaded and unloaded portions of the surface.

A classical example of this type problem is Hertz' [l] * solution for
the contact of two solid,elastic spheres. In this investigation we are con-
cerned with the symmetrical indentation of a shallow, spherical shell by a
rigid constraint. The shell is assumed to have no edge restraint.

In 1962, Essenberg [2] considered the problem of a plate whose upper
surface is partially constrained by a rigid, parabaloidal indenter. He found
it necessary to employ the E. Reissner [3] plate theory (which extends the
classicai theory by considering the effect of transverse shear deformation)
since the classical plate theory predicts the following unsatisfactory result:
If a plate is loaded only from above by a rigid indenter whose contour is a
bi-harmonic function, then the pressure between the plate and the constraint
Is zero; equilibrium is maintained by a discontinuous resultant shear stress.

Essenberg was able to obtain a physically consistent representation

for the pressure; he also noted the divergence of the improved and classical

* Numbers in brackets refer to references given at the end.



theories * even for very thin plates. He showed that if the surface traction
Is a quantity of interest, it Is necessary to employ the improved theory.

In 1946, E. Reissner [4] developed a theory to describe, from the stand =
point of classical shell-theory, the stresses and small displacements in
shallow spherical shells. In 1955 Naghdi [7] extended these results to Include
the effect of transverse shear deformation and normal stress in the stress-
strain equations in the shell space.

For the problem that we are considering, the shallow spherical shell
constrained by a rigid indenter, the result afforded by classical shell theory
(under the Love-Kirchoff hypothesis [8] ) and the shallow shell approximation
Is unsatisfactory. For constraint by any smoothly shaped indenter, classical
theory predicts that the pressure between the shell and the constraining sur=-
face is negative, i.e., the shell does not contact the constraint. Equilibrium
is maintained by the discontinuous resultant shear stress at the edge of the
loaded region.

In view of Essenberg's success with the plate probliem, we have solved
the problem of a thin shallow shell, with no edge restraint and symmetrically
loaded by a rigid indenter within the context of the improved theory due to
Naghdi [7] . |If the loaded region does not become too large, the pressure dis-
tribution between the shell and the constraint is always positive; the shell
contacts the constraining surface. Beyond a certain contact radius, the

solution predicts a negative pressure at the edge of the contact region.

* Throughout the text we shall refer to those developments that neglect the
effect of transverse shear deformation and normal stress In the stress-strain
equations as the "classical theories". The extensions, to include these

effects, shall be referred to as the “improved theories".



There is some question of the consistency of an assumption inherent In
shallow shell theory (the existence of a stress function from which the direct
stress resultants are derived ) and the simultaneous consideration of the
effect of transverse shear deformation. This Is discussed in the text for the
particular contact problem under consideration.

Numerical results are presented for several values of the radius of
curvature and shell thickness. And a physical interpretation Is suggested for the

prediction of an eventual loss of total contact between the indenter and the shell.



1.2, Reference Equations and Some Prelimipary Results

A derivation (from the general bending theory of shells) of the equations
of shallow shell theory is available In the text by Green and Zerna[:S] . The
extension to include the effect of transverse shear deformation was carried
out by Naghdi [7] o Here we wish to recall the assumptions necessary to reduce
the differential equations which govern the resultant stresses and couples in
the shell space to the approximate equations known as shallow shell theory.
Since we are only interested in shells loaded vertically at the apex we shall
record the equations that result after the assumption of rotational symmetry.

We refer to the coordinate systems of figure 1; r is the distance from
the apex measured in a plane parallel to the base plane. The resultant

quantities are shown acting on a shell segment in figure 2.

FIGURE 1



FIGURE 2

Nrr and Nee are the direct stress resultants, Vr and Ve the transverse shear

resultants and Mrr and Mee denote the stress couples. The displacement and
load normal to the middle surface are w and p respectively, The middle surface
strains are e, and €ee. Primes denote differentiation with respect to r.

The middle surface of the shell |s given by
2 YRt - (RH) (m

and the assumption of shallowness is

_d_g_=-_j__ N_r 2
ar {R“. r= ~ R O(l) (2)
L
or that for significant values ofr, thequotient of R Is small compared to one.

Reissner, who first obtained the shallow shell equations [h] » considers a

shel]l to be shallow if the ratio of its helght to base diameter is less than

say, 3.



In their rotationally symmetric form, from [6] » the equilibrium equations

are

(FNe) - Noo + £V, +rp, =0 (32)
(rvr)"*&(Nw*Nee)*-“P:O (36)
(r Mrr)‘ - Mae - Ve =0 (e)

Usually, in order to introduce a stress function, the term-'% V. is omitted in

(3a). But in this section we wish to draw some conclusions that do not depend

on the existence of a stress function.
If we denote Poisson's ratio by VY , Young's modulus by E, and the shell
thickness by h, then the middle surface strains may be written alternatively

in terms of displacements and stress resultants as

err= u"*—uﬂ—f’ = Nrr'\)Nge (4a)
AE

Coo = 3T = Neo- 2 N (4b)

and the stress strain equations are completed by

Mee = - D 8+ ¥84) (52)

Moo = -D (B +9p) (5b)

|‘1(lf9)

!
A v eV <)
where D =~ Eh.3/12 (1-92) +We now obtain a relationship between the shear re-

sultant Vi and the normal displacement w. We shall then see the singular pers

turbation nature (in the 1imit as h - o) of the contact problem.



If we substitute (5a,b) into (3c), and replace g by (5¢c), then

5V V- (10 5V, = -fw)' ©

where k- “)) ) st_s‘._. L d
drr v gr
Now let
3
P> VP’Y.rDﬁ ()

Then (b) becomes

( \Vf’wf) (14 mm‘)v "“(V(’ ) ®

where vz -

And from (6), in the limit as h - 0, we have

\/!,=-_F(vf ) (9)

Hence, if we obtain the non-dimensional shear resultant of classical theory [h] ,
as the limit as the thickness approaches zero in the improved theory, we make

a singular pertubation. (Alternatively, we can obtain the dimensional shear
resultant of classical theory in the limit as k% 4o in equation (6)). This is
the root of the divergence of the classical prediction for the pressure from its
improved value [Z] even In the limit of a very thin plate. And from this singu-
lar pertubation relating the two theories we account for the improvement In the
pressure distribution that is obtained by employing the improved theory in the

contact problem for shells.



We shall now derive a representation for the normal displacement w that
does not depend on the existence of a stress function. For convenience we
neglect surface loading p,.

From (4a,b) we obtain

(Nee'*)NrrY: _N_Lr_r;ﬂ_gﬁ_(wﬂ + _&\if_w
and with (3a)

N9°'+ Nee-Nrr . hew _ _L\/ (10)
R
Upon adding (3a) and (IO), and Integrating their sum we have

) ) [
Nee#Noo = B s - t2 [y g an
Now to obtain a homogeneous representation for w substitute (5a,b) into

(3b,c) and replace g by (4c). Then

DV4\AJ’+?!{-(NH*N09)' ‘—{}T{V’(Nrr‘fNeO)’O (12)

and with (11) we have
r

3 + b L
Dv.w.. (k‘ + |R )Vw RIW-S(’;\IV&‘ ar. (13)
Before discussing (12) and (13) we record the differential equation for the

slope g. If we substitute v from (3¢c) ingo (5¢c) and replace the couples by
(5a,b), then

" ! : 2, L 2 /
+ -
A4 /g_r —(k r’)ﬁ N (14) |
First we obtain the equation for w as given by classical theory [“] .

In (12) let k% - co. Then

DV4W+J§(N”'+“99>=O “2.)



From (6),

‘ \, = - D(V'w) (6)"
! so that (11) becomes

| NretNoe = %’“—w + L y(ghwr) (1)
And then (12)' yields

| + YV o EN \f =

i YV w+ l—“g—,—vw+ﬁw-o (15)

i If we further neglect the term'ﬁ v, in (3a), then we obtain the equation for

w given in@] ’

4
VW+%2"6W=O (15)

We see that neglecting ﬁvr in (3a) gives a more concise representation,

for then a stress function F exists such that

Nn- = -E— (16a)

r
and

Noo : F" (16b)
From the compatability equation the entire problem is then posed in terms of
two equatiens for w and F [h] s but actually (15) could have been solved in
terms of Hankel functions and the direct resultant obtained from (ka,b). The
solution of (15)* is given [5] in terms of Kelvin functions and for values of
R such that%&((l. the solution of (15) in Hankel functions is nearly identical
to the solution of (15)' in Kelvin functions. Hence introducing a stress
function is just a convenience for the development within the framework of

classical theory.
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But if we include the effect of transverse shear deformation then the
existence of a stress function is far more cruclial if we are to obtain an
analytical solution. For V. is no longer determined by (6') and can only be
given in terms of the solution of (14) and (5¢c). This solution nvolves the
general solution of (I4), f.e., a sum of modified Bessel functions and an
integral involving the displacement w. So that if we represent Nrr + Nee by
(11), equation (12) becomes an integro-differential equation for w involving
constants of integration (from the complementary solution of (14)).

In view of this difficulty it is apparent that we shall introduce a great
simplification if we adopt the formulation of reference [7] in which the effect
of transverse shear deformation is accounted for while a stress function is
simultaneously introduced. We present some arguments for the consistency
of these operations for the case of the contact problem.

The derivation of (14) Is independent of whether the teru\%% V. in (3a) is
retained or not. Hence, since w is specified in the contact problem, g is
specified by the solution of (14). And from (5¢) V, is given and we obtain
Mrr from‘(Sa). Now consider the direct stress resultants, As we shall see

below, the solution for V. in the loaded region is given by

_ SEh
Vi - zcrev) C Li(Rr) (17)
where C is a constant to be determined. Then from (11)
Nrr"’NOe = _E_Aw- SIES‘K CI, (kr) (18)

where [n is a modified Bessel function.

Then from (3b), (17) and (18) we have

pors Srwe SRR (- S




2
Hence introducing a stress function introduces an error of o(&) in the

pressure distribution (¥). Now the vertical force R, is given by [4]

RV:%NVT ‘Vr (19).
and for the contact problem, if P is the total force exerted by the constraint,

then outside the contact region

Ry: %r (19)'
From (19) we know that introducing a stress function is consistant for the
pressure and hence for the total force P, So from (19)', if we can argue the
consistency for V., then we infer the consistency for Nrr and hence Nee.

Now whether the integro-differential equation (13) is solved for w, or if
we solvgﬂ(ZI) » the boundary conditions do not change; they are specified in
the contact problem. Moreover, the same number of boundary conditions are used
in determining w, g, V&, Mrr, Nrr, whether or not we introduce a stress function
(see general boundary conditions in FS] ). And we can assume that in solving
(21) along with (14) we are not solving a system whose order is lower than
that of (13) and (14).

So the fact that the boundary conditions for the problem are unchanged as
well as the order of the system is a good indication that near the contact
region the solution is not sensitive to the introduction of a stress function.
And since we are also solving the problem for an unlimited shell, i.e., regu=
larity conditions at infinity, we expect the solution to rapidly approach the

membrane solution.

(*) Terms of the O(QY are neglected in the shell theory from which the shallow

shell equations are derived.

(+) Equation 21 is given at the end of this section (2.2). It is obtained by
introducing a stress function in equation 12,



It is therefore reasonable to simultaneously introduce a stress function
and the effect of transverse shear deformation for the contact problem. If
the load instead of displacement were specified, then (13) or (21) would be
solved with different boundary conditions and it would be difficult to argue
the suitability of introducing a stress function. One would probably have to
solve (13) by asymptotic integration.

In the contact problem, the continuity of Nrr yields the unknown contact
radius. The expression for Nrr in the unloaded region, in order to satisfy
equilibrium to 0(&)3 should be obtained from (19)'. Then, the continuity of
Nrr as determined from the stress function F will yield a remaining constant
of integration in the problem, (the constant Ag in equation 41 below)

And so we close this section with the field equations as derived in['7] .
These equations will be employed in the solutions of the contact problem in

the unloaded region.

V'F - v o (20)
DV"w’ +(| - i;v‘)—{iv‘p = (|- -;zvz)p (21)
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1.3. The Formulation of the Boundary Value Problem,

Let us consider the displacement boundary condition for the loaded por=-
tion of the shell. The result is the same as Hertz' contact problem and we
find it useful to follow the development of the boundary condition in that

problem as given by Timoshenko and Goodier[l].

AR
|

g
SO

"’ . ","'..' 'l'..'l"".'......'
e v N Rt o
\ >y

\

N\

FIGURE 3
L L
We refer to Figure 3. As long as R; and R o are small compared to one,

the equations of the rigid body and the shell are respectively

2

=

5, 2K, (22a)
and

¢ - Y (22b)

ToaR,

Let T be a tangent plane at the point of contact, and w be the local deforma-
tion of the shell by the rigid constraint. Then, with respect to the tangent
plane (assumed to move vertically such that as two points M and N move into

the region of contact, they do so in a plane that remains perpendicular to that

tangent plane) the displacement condition is W+§ = - ¢
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And if the center displacement of the tangent plane is S, then with respect

to the middle surface of the shell, the displacement boundary condition is

we §-(8.+5,)
If we let
5*: R‘f Ra
2R\ R:
then
W= d- 8y’ (23)

We designate by a subscript "i' the "“inner" or {as simultaneously referred
to,) the solution in the loaded region. Similarly we denote the solution in the
“outer'' or unloaded region by a subscript "o,

Then the boundary value probiem for the sheil with no edge restraint is
posed as follows: Let r, be the boundary between the loaded and unloaded
portions. Then we have the “Inner" problem:

Solve

Bl B (K ) k! ()

Subject to
as r—so, /5 is regulqr

and

ws §-rp?

From the solution of the inner problem obtain V: and Mrr from (5).

"Outer'" Problem: r >re

Solve (see reference [6] )
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V'F- %’_‘.Vzuf:o (25)
4 L 4 Lalr -
DY w h‘R‘V F+RV F=0 (26)

Bt B (K5 )pe A @)
Obtain V. and Mrr from (5) and require that
as r - 00, g, Vr, Mrr, w are regular
Matching Problem

To obtain the constants of integration, match the inner and outer solu-

tions at ro SO that

at r = r,, Mrr, g, Vr and w and Nrr are continuous

The Homogeneous Solution of the Equations Governing the Boundary Value

Problem.

Equation (24) is a Bessel equation and its solution is

/3= A Z.(kr)t A, K.(ke) + Bp (27)

where the particular integral, by variation of parameters, is given by

e - A‘/ﬂw(n){ L(kr)K,(k7) -K, (ke ) I, (k7 }Jn (28)
ll and K‘ are modified Bessel functions of the first and second kind respec-

tively and A' and A2 are constants.

By applying the operatory 2 to (26) and using (25) we have the following

equation for w

AL fﬁ VI B VW o @9
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By linearity we factor (29) into a product of three operators as

VE(V+e) (VG )W =0 (30)
where C: and C; are the roots of
4 ER 2 gl (1)
C + k‘R‘DC + —;‘D =0

we > w; (32)

LAz )
where w; are the solutions of

(Vvc)w =0 (33a)
(9*+ C;)wl c 0 (33b)
Y:W, =0 (33¢)

if[lz, Chapter 5] the factored operators commute and c,24=cf 20 .

The solution of (3i) is

C = = € (3‘08)

-9
sz: 'R"; e ‘ (34b)

where the bar (| ) denotes the complex conjugate and

VR, ! [zs o) RY L
1= /711(1-9‘) ! 6= fom- 3(/-0)(k\) 1 G5)

Since the requirement of commutivity of operators and distinctness of the

roots C; is met, the solution of (29) is the sum of the solutions of (33).
We require a solution that Is regular as r - 0o and therefore we take
the solutions of (33) in terms of Hankel functions.

o

W=D, Ho (¢,r) + D, H(c,r) + DK (S r) (36)

¢ DaH(E,X) + Ds+ Dy I &
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(1,2)
n

where H are Hankel function of order n and of the first and second kind,

respectively. But (36) must be real and therefore we set

D, D = D|' ) + H !
T | D3+ B; - Dy (37)
(D3-DL)1=DI ) (DA'D,)'l'-D.q
Then if we employ the identities
D TG TR
Ho (2'-) = Ho (1) (38)
H.7(3)= H'(2)
and solve (37) for D; and substitute into (36)
we have
W= D! ReHa ler) + D, Re Hlcir) + Dy )

£ Oln X -0, S H, (er) - D, K7 ler)

Where Re ( X ) and Im (X ) designate the real and imaginary parts respectively.

Now if we further note that

H2 (0= 2 T(x)- WS (x)

ihere Jpp is a Bessel function of order n, then with (35) and for convenience

i

new real constants A;, the solution (39) becomes,

)

W=AsRe Ho @) 4 AgdmHo ) +A5 R Tu(2)
b A TE) + A, AT (40)

where 1:-{-3“/1

From (25) the solution for F is then given by

F- - %9‘{A3 e 1) ¢ Agd [e R, 0]
+As RQ[Q—LGL(Z)] + A &n[ﬁ-iel‘o(z‘)]

. (&)
- AQ Q”"T + AIO}



We note that If we neglect transverse shear deformation (k2 - 00), then @ - 3T7/2

and & o & i3/2, And if we recall that
Re [HJ"({ -J")]= 2 ok (422)
&M[H;”(‘;: i.%j: 1% f (42b)
o TS 50 .- wze)
QY [Ie»(‘; ‘%)]: fe ¢ (424)

where kei, ker, ber, and bei are Kelvin functions, then as kz - 0o, (4O, 41)

reduce to Reissner’s solution [S] .



1.5. The Solution for a Point Load at_the Apex,

To derive the solution to the problem of a point load at the apex of a shallow

spherical shell having no edge restraint we shall employ the technique used by
Koiter (Ref. [16] ) in his solution for a complete spherical shell under point
loads at its poles. Accordingly, we require the following representation of the
divergence theorem: If S is the surface area enclosed by a smooth countour C,
and n is the unit normal vector to the contour C in the tangent plane to the

surface, then for a twice continuously differentiable function pons,

Lf Vigde - fﬁ' Vo da (43)

Let us consider the solution for the normal displacement w, and required that

&S ¥—>0 , Nep ,Noo are Sinite (4ha)
a3 Y0, W, w are Sinite (khsb)
(4hc)

as ¥ —>oc0, B W —o
where w is the solution of equation (22) in the absence of surface loads except

for a concentrated force =P at the apex,
Our result (40) is the solution of the homogeneous form of (21), and the

only component that is bounded at r=o and approaches zero at infinity is

w= Az Re HS'(Fe*™) (45)

And so in order to complete the solution we must determine the constant A3. But
we first record some formulas for the behavior of the value of Bessel functions
for small values of their argument.

If z is a complex variable, then by definition

oo p(L _\mtzr
Jm(?-'): N (z 2> (462)

rli(n+r)

r=o

19
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We denote the real and imaginary parts of J, (&) with 2 in polar representation

as 2 = Pe‘“‘ by W, and v, so that

Tolz): ua(p¥ )+ % (prg) (46b)

If the Bessel functions Ym(!) have their real parts denoted by Uy and their

imaginary parts by Vm, then

Yn(i\’-*un(f)‘?)+ivh(f’»‘¥) (46¢)

We require the representations for n:=o,N:1 ; from the introduction to ref-

erence (17) we have

Us(p): &{wo(palle i) -y} + S.pa)  weo

Vo((’»@= T?;—i U:((’;Q)(f‘iﬁ'j r/)_) + l_?u°( ,q)} N 'To( ?'Lg) (46e)

-! |l"

%u {P.Q\{fifﬂf/ uv'(\‘p(_?}-'_-zj-‘m{_g-ge(g)‘_g) (46f)

2/ e

—

U=(g,u\

z z . T (46g)
\/n (f’ L?) = f{‘};(?"‘ﬂ(ﬁfq?/z) {-Qh,(f}‘ﬂ}f,n,fml?' l'(?"g) ]
where S,, To’ S]. Tl are regular nearf=o and }* is Euler's constant.

We now proceed with the solution. Integrate equation (21) over a portion

of the surface of the shell, with p a concentrated load.

Offwds+ [[(- soy)irrde - [{pde

Then with (43)

ﬁn V W JA« t 57 HV Fda -Dkg§ *‘V(VzF)cl (47)

S
= \;();\39 )fJPCJcr



Now let c be a circular path symmetrical about the apex and given parametrically

by polar coordfnates ry, (0. We take the limit of (47) as r. - o .

am 21 ° )
_ 3 (g2 | 3 (VP rd _ ) (48)
{i {j' VW)T(J(U"“‘ (VF)Y‘ w} = -32(17)
ro':no (o] br( D&IR 0 or r=r-° : EI‘\3 P

where=-P is the point load and we have dropped the terms that obviously will not
contribute (see the conditions 4ha) in the limit as ro = ©-

But from equation (20),
ViF- Bhywia ta, twr

where a; and a, are constants and a, = o by (4ha). Hence from (Lhb) we see

that as r_ - o the second term in (48) gives no contribution and we are left

with
am
Y (2 1)
i VW To’w} = - 12(-¥ (49)
V‘!.-:‘o{‘[:".( ) r:rd E)\3 ’P
Now since
H" (i>: 3h(*)+ LT;(%)
from (46 f,g) we see that
(13 ‘e/l . .
Hl (%e ):-%(M%+ng>fg(r) (50)

Where S(r) represents terms containing singularities 0 (In r) and the remaining

regular terms in the series expansion for Hl(l) (). And since

o i 30 8/
LT (5e®) e ThO(E o)

4

we have

1 (8/; 2 . .
%Y(V Ho (ge ))‘ T(Me-cme)»,f(r) (51)
Then (45), (49), and (51) yield

2. - |2(l‘))l)
A, Zﬂ(ﬂ’)mg E W3 ¥
or
2
P el (52)
st~ Ear 270
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Hence the solution w6 for the point load is

P o P R I

aT EXR 2
From (42a) we see that as k2 - 00, (@ 31'f/2),

Re H'(Ge™) — 2 it

WJ-’ \i|l(|9 ?R M

T Exz b
the solution given by Reissner[ S].

and

We now determine the stress function F given by equation (41). From the

determination of constants in the solution for w, we see that,

- -—~—JI {A3 Re[ ! W(fei%)] - A, Q«f} (4)

and we must determine Aq. But this follows immediately from requiring Nrr to be
!
finite at r = 0. From equation (10), Nrr = F/r, so from (54) and (50)

we see that Nrr is given by

)\ 2 -;9/
Nrr = —E—R— {AB KC [T_%'.r Z(A""‘\ -] f(, con 8 ) + g(r)} ¢2 (55)
And then the requirement (4ha) is met if

hos flrsmgeme]hs. 9

And with A, given by (52) we have

uf®
)
vio

= (-v*) PR
Aq ‘:1’; EX ZMO(

Hence, the stress function F¢5 is

R .

(57)
)

(58)
ﬁagg

Mo
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If we make use of (42b), we see that as kz..a, ,© —» 3T/y

L
Fe — .z'n' { Xw + L}
the result derived by Relssner(s] .

To complete the solution we require g. From (27), with A] = 0 by (4ic) we have

B= A K (kr) +p (59)

and B, is given in appendix I, equation (h) so that

- Ak Re[ £ wilge B,

+e7p

Now, from equilibrium, the total resultant normal force V, acting on a vanishingly

small circular region with center r = 0 is
afr

- __F_ - y . 61)
Ve 7 i .(v' AL

With V_ given by (5c), Nrr from (55) and recalling [ll, page IIS] that

Ki(ke)s 77+ Log (B5)T,0er) + (r)

where Y((r) represents terms bounded near r = o, equation (61) becomes

PO C TR e |

ar  r>o0 12(147) Y,
where

e
ke e/

And with the behavior of H](‘) (2) given by (50), and A3 from (52), (61*)

yields

P g@}_{,r g oin® (62)
Toar seh 2 LR



We note that it is further necessary to verify that the solution obtained

is the same solution as an appropriate limit applied to a sequence of problems
involving continuous external loads which in the limit approach thé concentrated
load. We have not carried out this procedure but rely on Koiter's [lG] conjecture
that there is no difficulty as long as the strain energy is bounded; this is the

case in the solution given,

e B[ g 15| o
™ e 4

{6, W, Oh)) (58)
M -PR Me[gr Re{e “H ({e )} "”"ngﬁ“i
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1.6. The Symmetrical Constraint of a Shallow Spherical Shell with No Edge

Restraint.

In Section 1.3 we have formulated this boundary value problem. For con-

venience we recall it as follows: Let S denote the boundary between the loaded

and unloaded portions of the shell. Then for

0<YVY<Yo, WAV, Moy N, ave Sinite (64a)

r>r°, as \"‘"OO,W,ﬁ,\/r,Mn,N""")O (6l+b)

and at r = r_,W, B, Vo, Mrr, Nrr are continuous (6lic)

1f ;>(r) is the load on the upper surface, the equilibrum condition s
ro
27 f rpe)dr = Pn) (65)
o

Once again we denote the solution in the loaded region by a subscript i

and in the unicaded region by a subscript o. We shall denote the resultants

(6ka) by V;; Mi and N; and those of (64b) by Vg My, No. Then, from (23, 27,

28) the requirement (64a) is satisfied by taking

Wi = d- x‘rl (66a)

B:= AL (kr) tarr (66b)
From (5¢c)

\ji B |25,§E;}:)) A\ Il‘k() (66C)

and from (5a)
M__ A[k'\; () - (- )ll*')]f 20149 ) (664)

From equation (&0), we satisfy (6kc) with

Wo = Az Re N )+ Aadm (@) (672)

And then from appendix |, equation (i) we have
B, AuKikr) #As Re) 0 (e fA,,\)M[) Wk e

e 25 Dk v 027 0]
t A4%{U-§;A )HT"(e)S ] (€7¢)

from (m)
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and from (1)

Mo p [ kot (s
+ Ay Re{(lzg_ fz)(Hom(i) at B‘;;(i)]
TRV IC S (ORI B

After some algebra, the continuity conditions (64c) determining Aty Ag,

A3 and Ay, are ( 2.z 1 qua )

Q = -

AsR([H:)(i.ﬂ + Mg Smﬁ'\:')[}'] ‘;c‘")f“\‘.z (68a)
A R € W] ¢ A S22 W] c2on, 6

AR D] e A MY ALK (k) - AL )= 290,

18/, T
\e n W
A3 Re[ /X ( [ )]‘? A*&’M{ e H (i] Az_kKo( "o) 'A|k10(kfo\=4r (68d)
The solutions for A3 and A# follow from (66a,b) alone and therefore the

algebra is not too tedious. Once again a bar denotes the complex conjugate

As(\‘.‘,g) = &M{(t‘r,'-ef)( t IIH (m UG H (R ‘} (69a)
37»\{6 kO/z H;’(iv] HI()(it)}

A, 8)= = Ref20r 4K 24 (e 8)e ™ v (2} (6396)

%{e“”" H, (2) H"’(z.)}
N g(k]
Aa(rd) = S -S(plr) - Nk e S (s
K kro\ K (kroy.’. Ie kr.;)K'kn)

I,(k'o

B T e T S



Moy . Kolhe) 5y,

A(ro;d)= S(rYpuiny - KL (hre (694)
(r ) \/* ) l.(kfo] t KoLkr‘,) I.(kn) .
K\[kfo)
200e% o \TET S
7((r.3-i,;§ ¢ ‘\"‘{-ﬁ'e_—"m (e, f2) £ €% g MoK (D] (760

I { e 1 () B (2]

S’ (r° ) 20, . 3«\{1& Yo )\Q B : ”{2..):\:‘-—)(:’3 +¢ r:xe- % HT,(E.] m;;\}qow
AR TN RIS

S O T TANC TR
P{n) - 3"\{ kz ‘-\0 (10) n| {lo) + i\ (k';)))‘e “| (2D)Hl [*o)} (70C)
To(kr)+ KsCler) T (kr,)
Ki(ev%)

And for convenience we recall the following definitions:

(Appendix |, equation (h'))

6 = tom -J%\-Y 3-_35 = (equation 35)
4V
kz : M (equation 6')

x_. ‘J—R—ﬁr_\—/ (equation 35)

f= __R_)ig}_. (equation 23)
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We now recover the center displacement 5(ro) which follows from the
Greens function for the problem, "'6’- derived In section 1.5. For as in

Hertz' problem [l] » the center displacement g (r,) satisfies

S P(ﬂ We rdr = §(%) (7)

and p(r) is now given by (3b, 11)

rpr)s -2 x (Lpe) - SER A (S )erT. (k) 0

120149)
And from (53)

Wi As Re[ui"(ﬁeie")] (73a)

Where

e pe Ip«mé (73b)

2T ER 2

From (71,72,73) it is evident that we require the following integrais:

(for details of the evaluation see appendix 1, section c)

%

Al [Ro(Ge ™I
aﬁeotie{(z 3420)“:“[ 2)+ TN H:" (2,) - % l} (7ha)

r

A (To J' o v. ‘°A)r3r -ﬂe {2.H‘,"(1.)+2_,T:"§ (74b)
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Ar): K W (5e ) Tu(ke) rde

- Fe z{on:n[%-)Io()tf- w‘t’»n:ﬂl*")l‘(k“%&}
+k (74c)

™
1‘»
Then substituting (72) into (71), making use of (73) and letting

Ni s Re[/\. ;1 (75)

results in ,t
-¥R 5
S M)t 5 %) Nalre)
S(Y‘o { R . > } (76a)
1+ R—;\h(n)- Lf( ”7\3( ) pive)
Where B: Ljze-02)eume (76b)
_ Kg(kro)
i Corys — )T iy S (1)

To (kv) + Kolkn) o gy
\(kfo)

To obtain a relationship forPand ro We employ (65) (or the continuity of
Nrr, with Nrr consistant with (65)), and with P and g as given by (72) and

(76a) respectively.

Pw) _ _¢rY, §e2 . 5 Afn,S)
—_—— =8 'o AR S ;0 )T (ke ) 1,
TS ST T U S P ,v:) (78)

With A, (ro; 8) and § (r,) given by (69d) and (76) respectively.
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1.7. Discyssion of the Resylts for a Flat Indenter

Figure 4 shows the pressure distribution p(r) between a shel_l and a
plane rigid indenter for a series of areas of applanatlon?' On the same figure,
the resultant force P(r,) (equation 78) is shown as a function of ry, the radius
of the flattened area. Figure 5 shows the resultant force for a shell radius of
30, thickness 1.0 and Poisson's ratios of 0.5 and 0.3. Figure 6 is the
same presentation for a thickness of 0.5.

The pressure distributions predicted by the theory are seen to be physically
consistent up tor = 1,27 for the dimensions of fig. 4. The classical theory
predicts that the pressure distribution is immediately negative.

We may regard the point at which the pressure becomes negative as the
end of the validity of solution since we have assumed that the indenter
contacts the shell everywhere in the applaned region. But,the fact that after
a certain radius of flattening the pressure distribution becomes negative, may
be indicative of the initiation of some kind of instability. In the examples
shown the pressure becomes negative while the deformations are less than 1/3
the shell thickness and conform to Donnell's criteria []3] for the validity of
shallow shell theory.

Although the accurate prediction of instability would probably require a
more elaborate (at least geometrically non-linear) theory, these results do
predict a physically reasonable situation. That is, if a shell is symmetrically
deformed by a rigid surface, than beyond a certain contact area the shell's
resistance to deformation is no longer monotone; the portion of the deformed

shell near the edge of that contact region Is unable to further resist defor-

mation,

* The calculations were carried out on the IBM 7090 computer at the University
of California at Berkeley,



< Appendix |
A, The Evaluation of B,

We evaluate the particular integral B , equation (28) with w given by

We Ay Rt ()] ¢ A (S0 (3] +A s Refsa (1] A M3 ) (2)

If W,(2) and wu (2) are two cylinder functions, then [15, pg. 90]

X
fw;(u)w,(vx)xdx- rEar {xw‘,“ %) Wy (ax) (b)
- &WQ (f;\) w,)ﬂ (0’**)}
In (b) let
8%
ol = i— , &=k (c)

and recall that

L(kn) = - 0 3, (i kn)
K.(kn) = -Z W (kn)

L (kn): J.(iky) (a)
k;(k]) = - 1;— H;n(tkn)

Then from (b,d) we have

Inen(ng2 )k ikndn -

‘Q/ :'.5/1 1°A
kz e‘o {J(K(kr\wo( l k'(kr)wm(rgf )} (e)
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r

s [Te( L& )T, )41 =

e {"L““)‘*’f( ) v o)

: (f)
From (e,f) it follows that
S’I“v{ )ik ), k)Tl )] 1 (9)

And hence, from (28), (a) and (g) we have

Bo= AsRe HG)+ Apdn ) Hhs RNT) (h)
# A I 2 J[2)

where
8
% _¢
AN — —5 e
LY/ &
B. Evaluation of the Resultant Stresses and Couples
We first evaluate Mrr, Mee, V. as given by equation 5, Nrr and Nee as

7
z-XYo2 | (h')
g€

given by equation (b), for the normal displacement w from equation (a). The

slope g is (27,h)

/3: A,I,(kr)f A;K,(kr) t AR ?\H:”(Z)

¥ A;,)»\)H.m(%ﬁﬂs Re 7\3‘(2)+A5§n)\j,(2) (i)



From equation (a)

- ] & W Ayl 0]
+ A; RC[T I\(%)lf-AQ &n[% I, ;)]

and we denote this and similar expressions below as

e

Differentiating (i) yields

B A.{u.un\- H;E}-A,{hk,&m e}

st oo )

&

SRR EEE )
Hence

-’%—- pt °f- A,{kl,ue«)- (.-n;y;_r)}
+ A {-kK k) - »))E_LQE_'_)}
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and
1;(;;\0\ V, = A.L(J“)+A=K,(kr]

Ao
VRS- T

The direct resultants are obtained from equation (16) as

n £ SR {2t o

Noo - F'= %H cxﬁj{xei%(“?(*) - W)

AsRe i/ :
(R 1)1
C. The Evaluation of the lntegra[gAl,_A 2 34 of section 1,

(p)

These integrals are evaluated with the aid of equation (b) of Appendix |,

the result [18, Pg. 133] that for Wy a cylinder function,
X .
P o) [ 27
fx Wp(x)Jxr -(/L-V}f)( W}()‘)J)‘

+ [xwh/,,,, (x) - (/4-9) w,(;)] (a)

and the following limits(which result from the formslas [n, Pg. 51;])

br e W (5e™) < -

. -tOh
Zile
Y >0 ™

(r)
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QM v Ho‘”(ﬁet%)l‘(kr) =0 (s)

r-o0

From (q) we have

A(x,): j’ (3 ‘%) J"[‘ ( ;e/) N ei%)

Oyl 6 16/2\™ u)
e 3,0y l/z) 20
+(T)rH,{2e +T rHl)

ol

0

S

The lower limit is evaluated using (r) above; setting E = =@ ~, we have

R

/\‘(r():fe-m{(if—%.)u 2)+22, n‘”(a)-_} (t)

The evaluation of/\ 2 (ro) follows similarly from (q and r) as

() L e b 28

and [\ ; (r) follows from (b), (r) and (s)
. Yo
/\3(".)= \(‘H:‘\(i)lo(kr)fc‘v‘
0

_ Ok ;
) CLB 2 {% Ht“ (2) Io(kf) r +k" Ho (z)]:;(kf)}

r

0

0

|
_ e
s §T sz
1

{zo K2 L(kn ) thn )(zo)I,(kr.,)/r%ri} (v)
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CHAPTER 2
An erimental Study of the of the a Vi
2.1. Introduction

The purpose of this study is to understand under what conditions of
magnitude and duration of loading the cornea behaves as a linear viscoelastic
solid. Accordingly, our experiment has been designed to ascertain under what
clircumstances the cornea conforms to the requirements of the Boltzmann Super=~
Position principle. Basically we have relied on hogs eyes, but several human
eyes have also been tested.

An attempt was made to assess any changes in the mechantical properties
of the cornea due to physiological change after death. Hence, we performed
some experiments at the site of procurement of the enucleated eyes, approxi-
mately six minutes after the animal's death. Although the results show some
consistency, the temperature was not controlled and due to the simul taneous
action of the variables age and temperature the results of the aging dependency
of the mechanical properties of the JAn vitro cornea must be regarded strictly
as prelfminary. However, it was definitely established that the creep response
shown by the cornea is not an artifactual result of ' enucleation.

The experiments may be grouped as follows:
A, eep Tests at an Intraocular pressure of 40 mm.Ha. (Fiqures 9-1

These experiments represent the most complete element of the rheological
study. An internal pressure of 40 mmhg was choosen to simulate the state of
the cornea under Schidtz tonometry or tonography. The plunger diameter in these
tests was 3 mm. This diameter and the loading range (4 g. to 12 g.) are approp-
riate to the conditions during the application of the Schidtz tonometer.

B. eep Tests at a Fixed Load and Diffe aocular Pressurew F i

‘6-20) .
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These experiments were designed to investigate the dependence of the
rheological behavior of the cornea on the level of intraocular pressure. The
creep response of the cornea was measured for a given load and an intraocular
pressure fixed at the consecutive values of 20, 30, 40, 50, and 60 mm.Hg.

To obtain a description of the corneal response at a loading range per-
tinent to applanation tonometry, a larger plunger (lmm. diameter) was employed
with a loading range of 2-12 grams. Hence we have an applied pressure (due to
plunger loading) that is at one degree considerably lower than class A and

its upper range overlaps the lower loading range of the experiments in class A.

c. rneal ession Tests Fiqure 21).

Since the cornea is capable of compression, this deformation mode was
investigated as follows. A portion of the cornea was removed and placed on
a steel ball whose radius was approximately equal to the corneal radius at
an internal pressure of 20mm.Hg. The experiments were then performed as
though the cornea was supported by an intraocular hydrostatic pressure. Since
we are'baslcally interested in the instantaneous (elastic) compression response,
the steel ball was thought to present a negligible source of error from the
viewpoint of obstructing the diffusion of fluid across the inner surface of
the cornea.
D. Volume Expansion Tests (Fiqure 22). (Eye Loaded Only by the Intraocular

Pressure).

When the intraocular pressure is raised, the upper surface of the cornea
(and sclera) symmetrically deforms. |f the material behaves linearly, and a
pressure increase from Pb to P, + spyields an increased displacement gw,

then Py +u$‘p should induce a displacement change of «d w. These tests were
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designed to check the material linearity of the eye in this deformation mode.
A pressure range of 20 - 60mm.Hg. was covered in 10mm.Hg. increments.

In section 2.2 we record some ideas from the theory of line&r visco~
elasticity. Section 2.3 contains a description of the experimental equipment,
and in section 2.4 we describe the experimental procedure.

The results of the creep tests are discussed in this chapter (section
2.5). The corneal compression tests and volume expansion tests respectively
provide an estimate of the foundation constant (see chapter 3) of the corneal
stroma and the Young's modulus of the combined layer of Descemet's membrane
and the pavement epitheljym (see Figure 23). These tests are pertinent to
the measurement of intraocular pressure and are discussed in chapter three.
2,2 Results from the Linear Theory of Viscoelasticity

The results stated here are from the foundations of linear viscoelasticity.
These have been rigorously given by Gurtin and Sternberg [ref.24] . Dis-
cussions oriented toward engineering application are numerous; here we refer
to the discussion by Lee [ref.26 ] « The distinction of a semi-relaxing
viscoeiastic solid is due to Hunter [ref.zs ] .

If Pand Q are linear operators in time, and o°(t) is the stress variation
with e (t) its corresponding strain variation, then a material is linear

viscoelastic if it obeys the law:

P(0) = Q(e) (79)
The relationship (79) may also be given as a hereditary integral. The exis-
tence of this representation stems from the postulate of linearity which is
equivalent to the Boltzmann Superposition principle:

Let a particular load variation be given by

L&) L k) (792)
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and the deformation response by
S = 4 (t)

Then if the load is changed to

(79b)

Lt)= o L,I[t) (79¢)
where o, are a series of constants covering the domain of loading, then the

superposition principle requires that the resulting deformations

S)= 4. (t) (794)

satisfy

Sr (t) = Ly é\\ &) (79e)

If the requirement outlined in (79) is met, then the stress and strain

in the body are related by a Duhamel integral as

t
et) =_£V (¢ -*r)d%’,(&ﬁdr (80)

whereuf(t) is known as the creep function. Alternatively

t
; _+) decr) (81)
crm-_iG(t T) e dT

where G(%) is known as the relaxtion function.

A material is called semi-relaxing if the extension response due to
an applied constant load approaches a finite limit as time increases. It is
possible to show that for such materials, the force required to maintain a
constant deformation does not fall to zero in time but appraoches a constant

value.

In order to check the applicability of the superposition principle (79)

we plot 8“ (H
°(r'




£
(&}

as a function of time and see if these curves (for successive “r) coincide
with the curve 5'(t). A viscoelastic material will have a response curve

& (t) that differs in shape from the load curve L (t). The special case of
an elastic solid is included in (79); in that case the load and deformation
response curves will have the same shape.

If a material can be represented by the laws (80) or (81), (i.e. 79
holds) and is of a semi-relaxing nature, then in the quasi-static case,
assuming the boundary conditions for the elastic and viscoelastic problems
are the same, the viscoelastic result follows by a correspondence principle
applied to the solution of the elastic problem. (see section 3.6).

2.3 The Description of the Experimental Equipment

To facilitate the discussion we first give a review of the equipment
employed. Each item is designated by a numeral and shall be referred to by
name (e.g., motion transducer) and numeral. The detailed description of any
particular apparatus will now be given and this list is referred to in the
text.

1. Motion Tramsducer

The mechanical transducer employed was a Taft-Peirce Versacheck Electronic

Gage. The basic equipment consists of 1) a pick-up head which operates

on the linear differential transformer principle and is capable of

detecting motion changes of the order of 1 x 10-6 inches. 2) A phase-
sensitive,extremely linear, carrier amplifier to magnify the trans=
ducer signal, and a DC meter which reads in fractions of an inch.

The Versacheck unit has an interpal calibriation circuit for determ-

ining the gain of the entire circuit. The unit may be selected to

operate any one of four meter graduations: In inches these are



.

1V,

V.

Vi.

4

b 5 5

5x 107" 1 x 10™, 5x 107, 1x 107>,
The meter is of the dead beat type, accuracy to within 1% and a
response time of 4 second with no over shoot. After a 30 minute
warm up time, the stability is 2 x 10-6 inches per hour assuming
good temperature control.
Brush Recorder Mark |1
This recorder was used to continuously record the motion transducer's
output.

Pressure Transducer
The intraocular pressure was monitored by a Statham Model P23
pressure transducer.

Visicorder Oscillograph
The output of the pressure transducer was recorded by a Honeywell

Model 906 C Visicorder Oscillograph. The Heiland galvanometer
type chosen was No. M200-120.

Statham Control Unit

The Model CB-19 Control Unit was employed for calibrating the
pressure transducer and for providing its DC input voltage.
Silastic

The eyes were set in Dow Corning Silastic RTV 502 with a Stannous
octoate catalyst. The setting process is not exothermic.

The motion transducer (1) was supported on two parallel rails to facili-

tate placement over the eye. The rails were attached to a heavy steel plate

which was the support for all the equipment directly {nvolved in measurement

(see Figure 7). The plate rested on a felt pad; the measuring equipment was

sufficiently isolated from vibration.

The motion transducer was fitted with a rigid extension arm capable
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of extending from 5 to 12 inches. It was found that a lever arm seven
inches along with the 1 x ]0-4 and 5 x lo'“ inch scales of the DC meter of
the motion transducer (1) was capable of measuring the imposed corneal defor-
mations. The variable extension arm was required to allow operation in the
vicinity of the eye and to accommodate the transducer choosen since a=-priori
we could not be sure of the deformation range. A weighting platform (covered
with foam rubber to damp any impulse due to the application of the load) was
attached at the end of the supporting arm. The underside of the platform
accepted the plunger that contacted the cornea. |
The experimental results below are appended with the pertinent data of
eye age, internal pressure, outer corneal radius of curvature and room tem-
perature. Two classes of experiments were carried out:
2) After nrocurement of the enucleated eyes, each eye
was set in its own covered container with the eye
resting on saline saturated cotton and allowed to
equilibrate with room temperature.
b) At the site of procurement three eyes were tested six
to seven minutes after death., The mated eve was
chilled and tested one to two hours later (see
figures 8, 14, 15 )

The class a includes the two human eyes and over twenty hogs eyes.
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2.4 Experimental Procedure

7.
2.“ AO

l.a

The eye was removed from the moist saline atmosphere

(see section 2.3b) and set in silastic (VI). Approxi~
mately three=fourths of the posterior globe was immersed

in the silastic. Prior to placement ah 18 gage needle

was inserted in the anterior chamber and attached to a
water column.

The eye was covered with 4=5 c.c. of saline during each
creep test.

The 3 mm. diameter, concave plunger attached to the motion
transducer (1) via a seven inch extension arm was placed
over the eye. The eye was raised on a cam~adjusted plat-
form so as to pre~load the cornea with a 0.5 gram pre-
load,

The plunger was loaded and the deformation response
recorded until it was no longer possible to discern changes
in deformation.

The eye was unloaded and allowed to rest for 2 time period
equal to the loading time. The saline was removed during the
rest time.

The eye was reimmersed in saline, loaded with a larger weight,
and the measurement process repeated.

After the complete run the corneal curvature was measured.

Discussion of the Experimental Procedure

The silastic receptor was pliable and did not interfere
(due to its distance from the loaded region), with the

measurement.
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2.4 B

The plunger head and stem were wetted, hence maintaining a constant

surface tension throughout the run. The entire unit was balanced with

the surface tension acting on the plunger, hence the surface tension was
controlled and eliminated as an operative force and as a source of experi-
mental error. (If the plunger was not immersed in saline, then the surface
tension could change during the run and the corneal load could not accurately
be known).

The pre-load was necessary to smooth out any surface defects and to make
certain that the plunger contacted the cornea at the time it was loaded.
The pre-load can always be calculated and it is too small to be subject to
an error due to corneal creep. Hence, it may be found from the elastic
calibration of the instrument. It does not interfere with the calculation
involved in superimposing the creep curves.

It was possible to visually discern meter motions of one-tenth unit, or
.0087 mm. This is better accuracy than can normally be obtained with
electronically recording indentation tonometers.

Corneal Compression

A central portion of the cornea was dissected and placed on a rigid ball

of radius 7.5 mm. The cornea was then loaded as in the creep tests above

except it was not immersed in saline. The surface tension was eliminated by

covering the corneal segment with a piece of 0.00025 inch thick teflon.

Since this test is a compression test, the teflon does not introduce any

conceptual problem, whereas in the creep tests a similar procedure might have

introduced extraneous membrane forces. Young's modulus for teflon is several
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orders of magnitude greater than for the cornea, so in the compression tests
the teflon sheet introduces no experimental error.
2.4k C. Volume Expapsio eriments
These experiments closely followed the procedure in 2.4 A, except the
only loading on the cornea (or sclera) was a preload less than 0.1 grams. The
deformation response was obtained by raising the intraocular pressure through
10 mm.Hg.increments. (The eye was set in the silastic in such a way that
there was no motion of the limbus during the corneal expansion test).
2.5 Discussions of the Creep Tests
The cornea conforms to the requirements of the Boltzmann superposition
principle.
1. Figures 9, 10 show the results of creep tests for two excised human
eyes. The creep curves superimpose to within 10 percent for the
3.2 and 7.2 gram loads., The tendency toward deviation from
linearity in the 11 = 12 gram loading range occurs outside the
clinical range of interest for the Schidtz tonometer. Figures 11, 12,

13 show representative results for three of the twenty enucleated hog

rr

eyes tested, it is Important to note that whereas the human eyes
showed a long term creep component, the hogs eyes demonstrated no
creep after two = three minutes. (%)

The elastic response for all the eyes superimposed linearly,
and the initial response for the 3.2 and 7.2 gram loads indicate
that in that loading range it is reasonable to consider the initial
response of the cornea as that of a linear elastic solid undergoing
small strains.

(*¥) Our experiments indicate a maximum of seven to elight minutes for the 7.2

gram load. St. Helen & McEwen [22] report a measureable creep up to

thirty minutes for the sclera.
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2, Figures, 14,15 show results for two (of three) hog eyes tested
at the slaughter house. The solid lines show the creep response
of two eyes tested six - seven minutes after the animals death, (¥*)
It is clear that the creep respomse is not an artifact due to
ageing of the in vitro specimen.

3. Figures 16 = 19 show that the response of an enucleated hog eye to
a sequence of loads at a given pressure; the figures in sequence in-
dicate the results for internal pressures of 20, 30, 40, 50 and
60 mm.Hg. Figure 20 shows the results replotted to show the corneal
response for a fixed load with the internal pressure as the para-
meter. At a fixed level of pressure the cornea behaves linearly for

the appiied ioad sequence.

(*#*) The mated eyes were refrigerated after enucleation. When they were
tested approximately 13 hours later, they all showed geometrically similar
responses but the magnitude of the instantaneous response was diminished in
one case by 20 percent and by less than ten percent for the others. Although
this result is of some interest, it is inconclusive due to the simultaneously

acting variables of temperature and aging.
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CHAPTER 3
Jonometry and Tonography
3 o' od [o]

In this chapter we shall employ the previous results to analyze some
Instruments that are used in the detection of glaucoma. Two of the devices
that we discuss are the Goldmann [21] and the Mackay-Marg ['23]tonometers.* and
in particular, their sensitivity to the magnitude of:

a) The radius of curvature of the coronea
b) The thickness of the various corneal layers
c) The Young's moduli of the corneal layers

From an estimate of the magnitude of the surface tension force operative
during Goldmann applanation tonometry, and from our volume expansion tests
(figure 22) from which we deduce Young's modulus for the outer layer of the
hog's cornea, we are able to Infer the order of magnitude of Young's modulus
for the central corneal layer. Hence we are able to extend Goldmann's analysis
of his applanation tonometer to a quantitative description of the forces
involved during applanation tonometry. Our results indicate that a certain
kind of elastic instability might appear during the applanation procedure.

After discussing the applanation tonometers, we consider the indentation
tonometers; in particular the Schidtz tonometer (see, e.g., [lé]). The linear
viscoelastic behavior of the cornea allows us to analyze some aspects of the
time dependent process known as tonography.

For completeness we include, in section 3.2, a brief description of both
the anatomy of the eye and the glaucoma problem. Section 3.3 Is devoted

to the development of a structural model of the eye. In section 3.4 we

discuss the Goldmann tonometer and In section 3.5, the Mackay-Marg tonometer.

*
Mackay-Marg tonometry differs from the use of previous applaning tonometers
in distinct ways set forth on page 60,
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Section 3.6 Is devoted to some aspects of Schigtz tonometry and tonography.

3.2 The Anatomy of the Human eye. The Glaucama Problem

Figure 24 is a drawing of the internal structure of the human eye. The

eye is formed by two layered, spherical shell segments. The segments are
flexible and (see section 33 ) they may have considerably different mechanical
properties. Fluid is continuously transferred into and out of the anterior
chamber. Hence we have the typical physiological process of fluid transfer

in a flexible vessel. Figure 25 shows the range of dimensions of the shell seg-
ments.

As far as the fluid mechanical situation is concerned it is sufficient
to consider that at any instant the anterior chamber of the eye contains fluid,

reasonably treated as Newtonian, (see article by Goldmann [2QL p. 105 = 125),
at some pressure Pog above atmospheric. In normal eyes Py is 15 - 17 mm.Hg.

The mechanism by which fluid enters the anterior chamber is not com=
pletely understood but it is known (see article by Kinsey ref. 20, p. 62 - 88),
that at least the simultaneously acting processes of secretion and diffusion
are of fnportance. Whatever the actual chemical potentials and their sources
may be, for our purpose it is sufficient to consider that there is a flow of
aqueous out of the posterior chamber, along the lens-iris passage way, and
into the anterior chamber. Fluid leaves the anterior chamber by flowing
through the trabecular meshwork, which can be considered as a perous media, and
into the canal of Schiemm. In normal eyes the rate of fluid out-flow, from
the anterior chamber (volume:250 micro-liters) is approximately 1.4 micro~liters/
minute.

Figure 2 illustrates the flow pattern in a normal eye. Figures 27-29
illustrate various pathological sltuatlons‘ which can cause an increased intra-
ocular pressure. It is this increase in intraocular pressure, whether constant
or periodic, (as in the majority of cases), that is a most frequent sign . of

glaucoma.



Tonometry and tonography are processes which attempt to detect abnormal
(say above 20 mmHig.) pressure levels or the response capability of the eye to
an increase in pressure. A person can be said to have glaucoma only after
there is damage to the optic nerve, but it is generally held such damage can
be caused by abnormally high or periodically high intraocular pressure.

3.3 A Structural Model of the Eye

Goldmann [21] has suggested that the cornea behaves structurally as
a three layered sandwich shell. The outer layer, composed of the pavement
epithilium and Bowman's membrane, the center layer made-up of the corneal
stroma, and the lower layer being Descemet's membrane. (See figure 23).

We shall also adopt this conceptualization while describing the
mechanical properties of the cornea. Since the outer layer is by far the most
rigid, the volume expansion tests (figure 22) for the cornea are essentially
governed by the properties of that layer. In these tests we measured the
motion of the upper surface, and this motion 5 less than or equal to the
motion of the lower surface. The lower surface is so thin, and the central
layer has such a low rigidity under the compressive strain during the expan-
sion test, that the pressure rise is transmitted across the shell and decreases
to zero across the upper surface., We see that the cornea demonstrates a linear
behavior, and we can obtain Young's modulus (of the outer layer) from membrane
theory.

If AW is an incremental displacement for a pressure rise AP, then

2

- AP -R
where R = shell radius, E = Young's modulus, and h = the shell thickness. From

AW

figure 22, xp- - 4 x 10-3 . /mmHg. The radius of the outer layer was 7.5 mm.,

and its thickness was between 0.1 and 0.2 mm. Then from (82 ), Young's
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modulus for the outer layer E; is bounded as follows:

4.0 x g mn.Hge > E} > 7.0 x 104 ma . Hg.
A thickness of .2 mm, was a generous upper bound and E; is probably close
to b x lOk mmhg.

The volume expansion test for the sclera, figure 22, indicates the non-
linear material behavior of the sclera. Opthalmologlsts have introduced the
concept of the coefficient of ''scleral rigidity"; this coefficient is a con-
stant of proportionality in the logarithmic relationship found between a
pressure change 5‘P and an induced scleral volume change AV, If J P is the
rise above a pressure level Po’ then the coefficient of scleral rigidity F,

is defined by

A= F dg, Botd? (83)

The non-linear relationship (83) closely fits our data for the sclera. .
Since the expansion is symmetrical, equation (83) Is the same If AW replaces
AV. ?or the hog eye shown, F = 0,02, Hence the cornea is supported on a
shell segment (the sclera) that demonstrates a non-linear material behavior
while undergoing small strains. Elastically, the sclera has a constitutive
law in which (in a direction parallel to its surface) an Increment of stress d ,
is related to an increment of strain de by

de =F logy, do (84)

The cornea itself is not free from a non~linear behavior as demonstrated
by the corneal compression tests (fig. 21). We infer from these tests that the
central layer, the stroma, behaves as a non-linear foundation for the upper
layer. But since the entire cornea con%drms to the requirement of

the Boltzmann superposition principle (Chapter 2),



we expect the nonlinearity to manifest in a direction in a plane perpendicular

to the outer corneal layers. Moreover, if we define a foundation constant En

by

0, = e, E, (85)
where()_;,‘ is the normal stress, and €, the compressive strain = displacement/
thickness, then from figure 21 we see that for the loads pertinent to applana-
tion tonometry (about 2 grams on a 3.0 mm, diameter plunger) E, = 200 mmHg.

Therefore for applanation tonometry the non-linearity of the central
layer manifests in a material whose rigidity in a plane normal to the outer
layers is negligible compared to the rigidity of the outer layer. We can
separately estimate its effect durfng applanation tonometry. During indenta-
tion tonometry, the stroma are '‘compressed out" and we can ignore the com=
pression mode.

In view of the apparent non-isotropy of the inner layer, (this also is
indicated by the anatomy of that layer) we must estimate the modulus of elasti-
city in a direction along the middle surface of the layer. Denote this modulus
by Eeo

Since we cannot separate the individual layers of the cornea, we can
only infer E. indirectly. Our estimate follows from the magnitude of the
surface tension force operative during Goldmann applanation tonometry and
the analytical results of chapter one.

During the application of the Goldmann tonometer the surface tension
balances the structural resistance of the cornea. In section 3.4 we will
estimate the surface tension force (equation87). Suppose that the cornea
is applaned to an area whose radius is .75 mm., and suppose that the tears

spread out to cover a 1.5 mm.radius. Then the surface tension (for a corneal

\n

-y
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radius of 8.0 mm.) force is about .35 grams.
Now if the outer layer of the cornea is .1 mm. thick, and we assume
EI = 70 x 10 4m.Hg. then the structural resistive force P, from that

layer is at least (figure 3{, and see the discussion in 1.7)

R

E nh*

20.03
or

P > 0.285 grams

Hence the corneal stroma can at most contribute .06 gramsto the resistance,
(since, [21] , surface tension over balances the corneal resistance at an
applanation radius of 1.0 mm.).

If we assume the cenirai iayer to be 0.6 mm, thick, then (figure 36)

__:E’:—- = Q- 05
En*

and if P, = 0.1 gram, then

-3
Etéz:]xlozmm“g. % 3,85x|0 E,

Since we have employed a lower bound for E,» @ lower bound for the thickness
of the upper layer, and have negliected the factor of corneal compression, all
of which contribute to a high estimate of P, we see that E, is at least 2
and probably 3 orders of magnitude lower than E,.

Since we have measured the displacement of the upper layer, and since
the actual thickness of the lower layer was unknown (for the eye pertinent
to figure 22,)we cannot estimate the modulus of elasticity of this layer. (it
may be possible to ‘'peel off" Descemet's membrane and separately obtain its
modulus of elasticity.)

However, during applanation tonometry wrinkles can be seen in this layer

[21] and we can assume that its contribution to the rigidity of the applaned
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cornea is negligible. For indentation tonometers, the magnitude of the
modulus of elasticity for Descemet's membrane is of importance for any quantita-
tive analysis. In section 3.6, we concern ourselves with the qualitative be-
havior of the Schigtz tonometer.

So we propose the following structural model of the eye.

The eye is composed of two different mechanical structures, the cornea,
and the sclera. The cornea is a shallow shell segment and is attached to the
sclera, a spherical shell whose volume is about 15 - 20 times the volume contained
by the cornea. |

The cornea is a three layered sandwich shell, The modulus of rigidity of
the upper layer Is several order of magnitude greater than the modulus of the
other layers. The center layer is an anisotropic material demonstrating a
non=-1inear material behavior In a direction normal to its surface. The other
layers behave as linear materials. In the loading range (2-7.5 grams over a

(I.S)zmm.2 area) of interest for indentation tonometers, the entire cornea be-

haves as a linear viscoelastic solid.

The sclera is a non-linear material. In a direction along its surface,
an increment of stress d¥, is related to a strain increment de by de = F 1094047 »

where F is a constant.



3.4 Applanation tonometry

An applanation tonometer flattens a central portion of the cornea
and measures the reaction to this deformation; it is a force measuring device.
Two tonometers that deform the cornea in this way are the Goldmann
and the Mackay-Marg tonometers.
The Goldmann tonometer measures the force required to flatten a 3.06

mm, diameter area. (The perimeter of the circle of applanation is detected
optically and the somewhat curious 3.06 mm. dimension corresponds to an area
over which | gram applied load is equivalent to an average pressure of 10 mm.Hg).
The argument, given by Goldmann [2ﬂ » for why this instrument measures the
intraocular pressure may be outlined briefly,

1. The forces acting on the rigid applaning surface are the struc-

tural resistance of the cornea, the intra-ocular pressure and the

surface tension of tears.

2, The basic resistance to applanation comes from Bowman's membrane

and the remainder of the cornea offers a resistance that is a higher

order effect.

3. During the applanation process, Descemet's membrane relaxes,

the pressure inside the cornea becomes equal to the intraocular
pressure, and when the flattened portion of the cornea is 7.35 mm2
in area, the applied pressure equals the intraocular pressure. The
force induced by the surface tension of tears, at that flattened
area, balances the structural resistance of the cornea., During
the process, the load is sufficiently small to neglect any induced
pPressure rise due to loading.
The Mackay-Marg tonometer flattens a small central portion of the cornea

but records only the force operative on a plunger situated concentrically

within the overall applaning surface. As the tonometer contacts the cornea

Sk
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the force on the plunger is continuously recorded on an electronic recorder.
The following sequence of events are the rationale given for the instrument

measuring the intraocular pressure [23].

As the cornea is flattened beyond the pressure sensitive

region, the structural resistance of the cornea is largely
distributed over the applaned area outside the force sensitive
region and the response curve gradually begins to decrease.

As the flattening process continues, the loading will become

of a sufficient magnitude (which corresponds to a flattened
perimeter of approximately 1.5 mm. radius) to cause the

intraocular pressure to begin to rise; at this time the

force curve begins to rise.

The magnitude atthis trough (see diagram below) is a measure of
the intraocular pressure, and the actual value is deduced through
a reference calibration curve simply obtained by turning the tonometer
through 180 degrees so as to measure the gravity load on the total,

force sensitive unit.

3

Po = intraocular pressure

2
F,:Po TG Y, = force sensitive area

time
The surface tension of tears is not a factor since the applaning
end of Instrument is covered by a thin membrane which offers a

negligible error in the measuring process.

In this section we shall analyze these two tonometers. The analytical
results of chapter | are combined to the experimental results of chapter 2,

to offer a theoretical basis for both of these instruments.
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3.4 A. The Goldmann tonometer

The resistance that the Goldmann tonometer measures is composed of:

a) The pressure distribution p (r) between the rigid indenter

and the upper surface of the cornea; designate the associated force

resultant as Pa° o Is the edge of the applaned area, then

= z’n'j p(r) rdr

b) The cornea's resistance in compression to the work done to

initiate the deformation of the bottom surface; designate this

resultant force as Py.

c) The surface tension of tears imposing a force Pc'

d) The intraocular pressure whose integrated reaction is Pq.

The component P, which is the representative of the deviation of the
corneal behavior from that of an infinitely thin membrane, is given by equa=-
tion (78). And the component Py is simply the intraocular pressure p,
multiplied by the area of applanation. Before discussing P, we consider Pb
and P..

The force P, may be estimated from the following considerations. Gold-
mann's experiments(l_—Zl],figure 51 ) show that after the outer surface of the
cornea is flattened to circular area whose radius is about 0.2 mm., the
inner surface also begins to deform. The radius of that surface then is nearly
in a 1=1 proportion to that of the applaned area.

We estimate the compressive strain for a total thickness h = 0.6, an applanation

radius r, = 0.2, and corneal radius of 8.0 as

2
%

n® 2R%n

And from the corneal compression test we have estimated (see Section 3.3) the

e - 4%10°

foundation modulus as 200 mmNg. Therefore the force P, is derived from a
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resultant pressure in the neighborhood of about 0.8 mmHg.

The force P. is very difficult to estimate since we must know the con-
tact radius for the tear-cornea-tonometer interface. However, the following
calculation indicates the order of magnitude of the force. With respect to
figure 30, let R, be the radius of the fluid surface, in a plane parallel to
the tonometer, which has spread along the surface of the tonometer. Let Fe

be the tear radius at the edge of the wetted area. Then the pressure drop across

the tear surface is [27] | \

INER IRy (86)
where ' is the surface tension constant of tears. The contact angle, and
hence the radius re depends, in part, on the spreading distance Rt' Hence
the tonometer surface and anesthetic are factors in the size of Fe®

As the tonometer contacts the layer of tears on the cornea, a fluid

layer spreads over part of the tonometer surface. |f the radius of curva=-

2
ture of the cornea is Rc, then if Ry<KRZ, it follows that

Ry

B

i
4 Re

2 3
— ﬁc 4RC.

L=

and henée

R+®

(87)

The surface tension constant f‘is known to be about.[ ref.]u] 50 dynés/cm.
So if Ry = 1.7 mm (a reasonable choice for an applanation radius of 1.5 mm) and

Re = 8.0 mm., then

3 dunes _
A? = 5585¥10 -55';-;- = 415 mm.Nj.

Hence the force P_, at the contact area for Goldmann tonometry ( Tr(l.53)2mm2),
is approximately.4i5 grams. This resultant is directed along a normal into the
cornea and pulls the tonometer into the eye. Hence it tends to balance the

forces P and Pb.
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Our analytical results indicate that beyond a certain radius, the force
Pa ceases to increase, i.e., a form of elastic instability manifests (see
section 1.7). Now it is imbortant to recall that our analytical solution
assumes no edge restraint, and we expect the solution to break down for some
flattened radius. (Probably beyond 1.5 mm. for a 12 mm. scleral radius, i.e.
the edge of shell about 8 diameters away from the loaded region). Also, since
we specify displacements in the loaded region, the solution applies for any
layer that flattens.

From figures3i32we see that after the outer layer is flattened beyond
about 0.5 mm. (if its thickness is 0.1 or 0.2 mm.), the force P, no longer
increases. For that rédlus, the center layer has only flattened to about a radius of
0.3 mm,, and the force P, corresponds to a pressure less than 0.8 mm.Ng.

Experimentally, [21] » we know that for an applanation radius of 0.5 mm.,
the surface tension force often over balances the structural resistance. And
this is consistent with our analytical results even if the center layer is
0.6 mm..thick (see figure 36 and the estimates for Young's modulus in section
3.3).

Therefore, our explanation of the process of Goldmann applanation tono-
metry is as follows:

1. Up to a flattened radius of 0.5 rm. the structural resis-

tance of the cornea is due to its outer layer.

2. Beyond this radius, the resistance in compression and the
structural resistance of the central layer increase to balance
the surface tension force.

3. As flattening increases, end effects come into play and the

resistance continues to rise.



This explanation is consistent with Goldmann's observation {21] that
the instrument's accuracy does not depend on the level of intraocular pressure.
If the instrument were calibrated at, say, a 20 mm.Hg. intraocular pressure,
and the pressure were raised to 60 mm.Hg., the cornea would be in a different
state of tension, And if there was no elastic instability in the rigid outer
layer, it is difficult to see how surface tension could balance the structural
resistance jpndependent of the level of intraocular pressure.

Also, it is known [21] that wrinkles can be seen in Descemet's mem=
brane during the applanation process; hence we have the experimental observa-
tion that at least Descemet's membrane goes into an elastically unstable

—mad il as .
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If the outer layer's structural resistance was monotone with an in~
creasing applanation radius, then our results indicate that for a 1.5 mm.
applanation radius, its structural resistance would be much higher than could
be balanced by surface tension. Moreover, in view of its rigidity, it is
difficult to see how the convenient 1.53 mm. applanation radius could be
found, and how this number could be the same for all eyes unless the corneal
resistance was very low beyond a certain applaned region.

Our analysis shows that the Goldmann tonometer has a very weak
dependence on the radius of curvature of the cornea. If the thickness of the
outer layer is nearly the same (say to within |5 percent) for all eyes, then
in view of the low modulus of elasticity of the central layer, the tonometer
is insensitiv:‘to variations in the overall corneal thickness of different
human eyes.

3.4 8 The Mackay-Marg tonometer

The corneal resistance that the Mackay-Marg tonometer detects is

the same as that of the Goldmann tonometer until the flattened area exceeds
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* By "insensitive'' we mean that the instrument's response is changed by
less than ten per cent.



that of the force sensitive region. Let r, be the radius of the flattened
area and n, the radius of the central, force sensitive plunger. Then the
force measured by the Mackay-Marg tonometer is composed of the following
factors:

a) The pressure distribution p (r) (betwean the rigid, applaning

surface and the upper surface of the cornea) integrated over

the area rgz. Let this component of the resultant force

be P, (rosr).

b) The cornea's resistance in compression until the bottom

, (rg)
€) ine intravcuiar pressuic P yiglding a racultant force

P3(ry) = PTr 2.

surface begins to deform; designate the force as P

.

d) The degree of co-planarity of the central plunger and the
remainder of the tonometer's surface. Let the plunger's extension
or insertion relative to a point on its surface, outside the

force sensitive area be e. And let Pe (ro;r*) be the measured

force arising from the deviation from co-planarity.

The force P, (ro;r*) is given by *)
n
P(rsn)= amm J'rp(r)dr L Pty (88)
[+
T
P,(ro',f}): IWJ‘“F“)AY > Fr<n2r, (89)

(]

The pressure distribution p (r) is given by equation (72) of Chapter I, and

if we perform the above integration we have =

(*) The expressions assume pressure sensitivity over a central area. If this
area is disjoint from the outer applaning surface, then the membrane forces in

(72) are not measured for ro 5 r,.
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where A, (ro,s) and § (ro) are given by (69d) and (76) respectively. The
resultant force P, is identical to P, for the Goldmann tonometer, and the
factor P, can be estimated. Analytically it would be very difficult to in-
clude the effect of a non-zero e, for if the plunger and surrounding
tonometric surface are not in plane, than we canpot continuvusiy 3pssify
the cornea's displacement in the region of contact. However, from our corneal
compression experiments we may arrive at an upper bound for the case of an
extended plunger, while it is obvious that if the plunger is recessed
the observed reading may (if the cornea did not completely conform to the
plunger) be low.

if the plunger is extended, then as ro increases beyond Pyt the pre-
ssure distribution p (r) depends on the extension e. But we assume that
beyond some r, greater than r,,say ?;, the cornea once again conforms to
the tonometer surface. Then if e is much smalier than the center deflection
in the co-planar case, we estimate the deviation of p (r) from equation (72)
as an additional pressure due to corneal compression. The center deflection
5 ) is greater than that of a membrane of the same radius4and hence § (ro)
;21:'3%{. For r,=1, and R = 8 mm., § (ro) ;6.25 x 102 mn.

The actual pre-set plunger extensions that may be operative in the

clinical use of the Mackay-Marg tonometer(*) are about 5 x 1073 mm. and the
1;7-—TF e were initially set, then during applanation of the tonometer e would

decrease, and the compressive strain would be induced by a deformation less
than e. The actual amount depends on the limpness of the plunger suspension.



force Pe may reasonably be estimated as outlined above for e up to, say
10 x 10-3 mm. From the corneal compression experiment (figure2l ) we have
estimated the foundation Young's modulus as about 200mm.Hg. And the local

compressive strain in a 0.5 mm, thick cornea deformed 10 x 10-3 mme iSs approxi=-

mately .2

€n = 2 %10

-2
so that fore—- |0 mm.

0}32 = 4-rnnm\i3-

Ifec2x10 m.,
GCzz2 = 0-8 mm.Hg.

These values are upper bounds and are very reasonable bounds for the
experimental values obtained on rabbit eyes by Mackay,Mara and Oechsli (3]].

If the tonometer was constructed with a very stiff suspension, and
a very small protrusion, say e = 5 x 10-4 mm., then the factor Pe would always
cause a high reading in excess of the intraocular pressure by no more than one
or two percent.

Now consider the force P, (ro;r*). It is known that the effect of
transverse shear deformation is important for thick shells. If this effect
were negligible for the eye, then from the classical theory of thin, shallow
spherical shells,[ql, the pressure distribution is

pr) = DV4W + ‘&R’(NfrfNee) (92)
where w is the normal displacement and Nrr, Nee are the membrane resultants.

But for small flattening w =J-% ﬁ;ﬁ , where g is the center displacement,

4
and V W=0. Hence .

R(’Q',!‘n)‘ Z',:‘T: j‘(Nu"Noe)rA" , o< 0k

]

And for rg > ry, the membrane resultants are held out by the ring (the

central plunger and the guard ring are separate mechanical parts) so that
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P (r sr, r ) =0, as indicated in the sketch below.
' 0% & =%

1

-

,/r._r*

'.o Ll

The prediction of classjcal shell theory
“In figure 37 we have plotted Pl(ro;r*=.75) for corneal thicknesses of 0.4
and 0,5 mm. and several values of the corneal radjus. P](ro;r*) = 0 before r°=2r*,
Hence the Mackay-Marg tonometer fulfills the r equirement that P](r°=2r*;r*)=0 for
Fyo = /5.

During the applaining procedure, the pressure distribution between the surface
of the tonometer and the cornea is continuously altered, and we note that our
theoretical prediction of instability does not necessarily imply the occurrence of
any sudden structural changes. (The experiments of Mackay, et.al.[ﬁﬁ] indicate that

snap through buckling does not occur).

e
o

the integrated pressure distribution is no longer monotone. And unless o > To,

We do predict that as flattening increases beyond some value of ro, say r ,

then whatever the value of Mt Pl(ro;r*) £ 0., For the above example, while

Pl (r°=2r*,r*;.75) =0, Pl (r°= Zr*,r;f.s) ¥ 0. And it is by a sufficiently large

choice of re (if the degree of flattening ro is to be approximately Zr* at the

time that the instrument indicates the pressure) that the Mackay-Marg tonometer

takes advantage of the elastic instability occurring during the applanation procedure,
The magnitude of the force Pe depends on the stiffness of the plunger

suspension and the initial deflection e. The error due to Pe is dependent on the

technical quality of the instrument and does not enter in a fundamental way,

Pz(ro) overestimates the pressure by less than 0.8 mm.Hg. (The second dip, during

unloading in Mackay-Marg tonometry is often lower than the initial dip which
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indicates the intraocular pressure. One reason for this Is that during
loading there Is some stress relaxation of the force Pz(ro); outflow is another.

The only theoretical limitation of the Mackay-Marg tonometer is the force
P2(ro) which causes an overestimate of the intraocular pressure. |If the plunger
extension was less than 2 x 10-3mm., then the instrument's response is always
an upper bound for the pressure, and for a normal pressure of 16.0 mm.Hg, it
yields an error of less than 10%. As the intraocular pressure increases, the
relative error decreases.
3.4C Summary of the Goldmann and Mackay-Marg fonometers

The practical limitations of the Goldmann tonometer appear to be more
severe than for the Mackay-Marg tonometer. A 10 percent error in estimating
the radius of the applanation area yields nearly a 20% error for the measured
pressure. Hence the skill of the opthalmologist during Goldmann applanation
tonometry is an important factor. Also, the surface tension force has a strong
dependence on factors such as the condition of the surface of the tonometer
and the amount of fluid on the cornea before it is applaned. Either of the
factors: accuracy in judging the applanation area or a variability in the
surface tension could cause a high or a low reading.

The Mackay-Marg tonometer's accuracy basically depends on the stiffness
and protrusion of the central plunger. If this factor is controlled (e.g.
employing a small, (e ¢ 2 x 10-3ln.) positive protrusion and a stiff suspeasion,
then the instrument will always yield an upper bound for the actual pressure,
measuring accurately to within 10 percent of the pressure. We note that due
to its weak dependence on Young's modulus, the Mackay-Marg tonometer should

yield good accuracy when applied on the sclera, which has a higher rigidity

than the cornea.
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3.5 Indentation Tonometers
In this section we shall discuss the Schigtz tonometer as representative
of instruments that indent the cornea under a constant force (*). The instan-
taneous, elastic response is measured in tonometry and during tonography the
time dependent response is measured for about four minutes. In
contrast to applanation tonometers, indentation tonometers, weighing 16.5 grams
in a typical clinical application, induce a rise in the intraocular pressure ,
and the magnitude of this induced pressure rise plays an important role in the
theory of the Schidtz tonometer. During tonography, the fluid outflow is
altered and the induced pressure rise depends on the loading, geometry, material
properties and the change in the rate of fluid outflow. Figure ( 38) illus-
trates a portion of the cornea under a Schidtz tonometer.

The deformation of the cornea probably exceeds1/3 its thickness and hence
the elastic solution is beyond the scope of the geometrically linear theory
(small displacements as well as infinitesimal strains) of thin elastic shells.

But we are not so concerned with predicting the magnitude of the elastic response

as we are with its functional dependence‘on the intraocular pressure and the

material properties of the cornea. And we have shown that for a fixed intra-

ocular pressure the cornea conforms to the requirements of the Boltzmann

superposition principle. Thus a correct elastic solution in conjunction

with the correspondence principle of linear viscoelasticity would yield the

time dependent solution (The level of strain in the cornea during the appli~-
cation of a Schidtz tonometer with a 5.5 gram plunger load is probably less than

5 per cent.)

(*) The cornea is loaded by two concentric cylinders. The curvature and load

of the central cylinder, the plunger, is such that its total surface contacts

the cornea; the total surface of the outer cylinder, the foot-plate, does not

contact the cornea. The applied pressure of the plunger is greater than that of

the foot-plate and the plunger deformation relative to the foot-plate is measured.

The problem is a combined fixed (the plunger contact radius) and free (footplate
contact radius) boundary value problem. (see p.71,72,below)
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We shall regard the elastic result obtained from the equations governing
the linear theory of thin, shallow, elastic shells as a first approximation for
the functional dependence of the center displacement on the intraocular pressure Pt
corneal geometry, and material properties. And we consider the corresponding
viscoelastic result as a first approximation for the time dependent change in
the deformation relative to the initial, elastic response.

Consider a homogeneous, linear viscoelastic shell, symmetrically loaded
over a small circular area whose center is the apex and simultaneously under an
inplane tensile force .T=f1R We assume no edge restraint; it is known that
the center displacement of a shallow shell segment loaded over a small area at
its apex with this edge condition closely approximates the center displacement
of a complete spherical shell under the same loading.

The shape of the cornea under the internal pressure P, is changed by a
constant factor under the load Po*gP . Hence the initial shape,[ref. :o]
is not a factor and the governing equations are related to (20,21) by adding

an inplane tensile force as in plate theory.
4 2 !
VF - E;%k*v W=0 (20)

OVW *+(- 2 V)VF (- ¥ )pe) s TV W @)

We only require the center displacement which is easily obtained from
the Greens function for the problem. Equations (20,21) are solved with the
procedure and boundary conditions of section 1.5.

The solution for the point load W is

Ws(r) = —%h«lm(l-i") oim® Re He ' (2) (93)



r = distance from the apex measured in a horizontal reference plane

)
2= L e /2
X
h = shell thickness
R = shell radius
¥ = Poisson's ratio

E = Young's modulus
1 ;le(v"’)/m

P = magnitude of the point load

But now
O
1+ £,)° -1 (94 )
where
€= () 50-2) (35)
E\h

The displacement at the apex is

Ws(o) _E__ MG},S(P v?) (%)

ATTE R

The center displacement for the shell loaded by a uniformly distributed

a
pressurel‘ over a small central area‘W‘r? is

- frp ) d
w(o\-z’lToﬂ_-?:r r (97)

where - f>= ["ﬂvrbz )

Integrating (97) with wéfrom (93) yields

W(0): -PR pime i > H(2¢) 2 2 1L (98)
ER 2 12.(1- 22) RCXL R 2
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(:0/2_
where z =If_e
"

Since rp is a constant, the center displacement in the time dependent prob-
lem is given by the correspondence principle of quasi-static linear visco-
elasticity. Let Poisson's ratio ¥=0.5=V, in the quasi-static problem.

We designate the solution (98 ) by

W) = PH@t) $(E, %, £.h,R) (98')

where H is the unit step function,

Let the Laplace transform of some functionlg(t) be denoted by

Y(s) - .Y Q(t) dt (99)
Then from the correspondence theorem, the Laplace transform of w (t) is

Ww(s): SE ( E(s), ))Q,Pt(s) h R} (100)

where E (s) = [s‘@%s)fﬂ , with the creep function W(t) defined by
equation 80 and-?iIZSis the transform of the time varying intraocular
pressure. The solution W (t) is the inverse Laplace transform of W (s), but
E (s) occurs in the argument of the Hankel function Hé') and the inversion of
W (s) would be extremely difficult. (If there were no in-plane tension the
inversionwould be trivial),

But there is a technique known as the '‘reduced modulus method* that is very
simple to employ and is exact for the instantaneous response and for the assymp-
totic solutions as t —» oo [28]. And since the cornea behaves as a semi-relax-

ing solid, well over ninety percent of the creep response occuring in the first
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two minutes, the method should be nearly exact at the end of four minutes,
the normal time elapsed during Schidtz tonography.

Suppose that we were to perform a uniaxial tension test on a strip of
cornea. Let the tensile stress be some constant value F, and the strain response

be e(t). JE—
e e(t) FHie) T

—

ely)

t
F e

Then the creep function W(‘:)=géﬁ , and w(t) is derived from w(0), equation 98':

wieY = PHOE (G %1 por ), 4 ) (101)

Or, explicitly from equation 98

- PH(t)R (-t)r“"’ m r)

where

9(‘:)= .{h/{\-" &E‘é‘_ :‘;\Q?:))(‘%\_)l __1 (103)
(I + Er(t))l

Pt dp) A .
@F(ﬂ— '/W‘(’c) (}h\ 50 ?o) (104)



w(k minutes)
For the two human eyes (same person) tested (figures 9,10), "~Ww(0)

w(l) =,
and 0.33 respectively, and for the hog eyes (figures 11,12, 13 ) w(O 53,

A4y, and .39 respectively. Creep, for the human eyes, would account for a
30 percent increase in the measured Schigtz deformation at constant internal
pressure.

Before discussing the solution we relate the pressure ot 8?(t)
to the fluid flow out of the anterior chamber and into the canal of Schlemm.
The flow problem is very complex and it serves no useful purpose to attempt to
characterize it more accurately than the present approach taken by opthalmolo-
gists,[29]. It is basically a low Reynold's number porous media flow, and
often (see article by Scheidegger,[30]) a linear relationship exists between
the pressure drop and the flow rate. Since the porosity of the media (the
trabecular meshwork) has not been measured, to say nothing of its possible
dependence on the level of the intraocular pressure at any instant, it is best
to characterize the flow problem in terms of pressure gradiants across certain
“"'resistances'.

Let the flow rate out of the anterior chamber be Qa and the in-flow rate
be Q;. Let the pressure drop out of the anterior chamber be APy, and
the pressure gradiant allowing the fluid to flow from the posterior chamber be

APpc. - Define resistance coefficients ¢ and g by

0 = 2 APac (105)
0= 5 2P (106)

Then in steady flow, Q, = Qp so that

= 33
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LPpc = A AP (107)

And we can distinguish several cases relative to normal values oy BN.
a) g = BN » & >y .+ open angle glaucoma
b) 8« By » @=ay ... perhaps a form of hypersecretion glaucoma
The pressure drop AP, is the difference between the venous pressure pv
and the anterior chamber pressure p,. Therefore
Py =P, t @ Q,

and equation (104) becomes

EPM= P«Vc'H x Qa (3-\)350-9«’) (108)
/yie) R
The initial measured response of the Shidtz tonometer is the relative
deformation of the plunger and the guard ring. Therefore the initial reading
has a more complex parametric representation than (98 ) including the weight of
the foot plate, and the radius Pf with which the foot plate contacts

the cornea. The radius f# itself depends on the load,internal pressure and

complex way that the level of intraocular pressure affects the measured response.

We see that the level of pressure, creep and geometry enter non-linearly, and
a small change in these variables would not yield a proportional change in de-
formation. Hence it is not difficult to understand how the Schidtz tonometer
can be quite sensitive to intraocular pressure changes.

The sensitivity is illustrated by the behavior of the Greens function

(93 ) at the apex. There is a strong dependence on the magnitude of P/E, the

71
the material behavior. So the elastic solution (98 ) basically shows us the least
|
|
|
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sensitivity to pressure changes being greater for smaller Young's modulus.
(See the experimental results, figures 16=20). In a certain range of the value
P/E, the instrument may be quite sensitive to the value of R/h.

Now the correspondence principle of linear viscoelasticity only applies
if the boundary conditions in the elastic and viscoelastic problems are the
same. But during tonography, the area of contact between the footplate and
the cornea changes and our solution indicates an over simplification of the
relative change in time between the footplate and the plunger.

The solution (102) shows that the change in the measured response of the
Schidtz tonometer may have a basic dependence on two quantities: the creep

function1+f(t) and an expression that we denote bX/A(t).

Poré‘olf _ Dean. (109)

PO e T '/ pt)

Moreover, we see that the material properties, (represented by the creep
functionQﬁ ) and the level of intraocular pressure (or the fluid outflow) are
linked by the parameter‘f&(t). And a possible inference from this parametric
dependence is illustrated by the following situation. Suppose Schidtz
tonography were performed on the eyes of two people, and the resulting tonograms

were different. Then the difference could be due to not only their respective

outflow resistances, but to a difference in their creep functions.
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